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Introduction

The 1999 SIA roadmap included an ominous prediction—that by about 

2012, the cost of test (COT) per transistor would surpass the cost of fabrication 

per transistor, as indicated in Figure 1 [1]. 

Figure 1. Fabrication and test cost trends.

Although the validity of extrapolating a decade into the future in 

an industry that delivers a new technology generation of every 2–3 years 

is debatable, the trend line is nonetheless alarming, particularly for a 

manufacturing step that, while vitally important, is too often undervalued. 

Typical strategies for decreasing cost of test include testing less, testing more 

efficiently, testing differently, and reducing the cost of the testers used [2].
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Implications for parametric cost of test

Although a wafer’s overall cost of test is dominated by the cost of functional testing, 

many fabs use a common organizational and reporting structure for both parametric and 

functional testing. This common structure sometimes colors perceptions of the economics 

associated with parametric test. However, the economics of parametric test differ significantly 

from those associated with functional test:

• Parametric test uses a sampling strategy, rather than measuring every die on every 

wafer.

• Parametric test results are used for process control and yield improvement, not for 

binning finished integrated circuits (ICs).

• Depending on the supplier, equipment in the parametric test cell can often be 

reused extensively– in fact, a recent analysis indicates it's possible to achieve up to 

85% capital equipment reuse over five or more process nodes.

• Parametric test involves measuring a wide array of signal types, ranging from 

femtoamp DC leakage to 40GHz RF s-parameters.

Applying a typical cost of ownership model to parametric test as used in volume 

production, then performing sensitivity analysis, reveals that while a 50% decrease in initial 

capital equipment cost decreases the cost of test per wafer by only 15%, a 50% test time 

reduction (TTR) delivers nearly a 50% decrease in cost of test per wafer. Ongoing TTR is 

dependent on choosing a system with a robust, flexible software and hardware architecture 

that allows performing field upgrades cost-effectively. These upgrades make possible an on-

going entitlement to TTR (and therefore COT reduction) in the range of 10% per year. The 

high value associated with TTR has led us to focus this work on the "test more efficiently" 

strategy for reducing parametric COT.

More efficient parametric test with parallel test

Although parallel testing is a well-accepted technique for TTR in functional test, it 

has only recently become available on parametric testers. This is due in part to the complexity 

of managing the wide range of measurements involved in parametric test, which requires 

measuring the electrical parameters of the key devices that form the basic building blocks 

of all integrated circuits: resistors, capacitors, diodes, transistors, inductors, varactors, etc. 

Measurements are performed on specially designed test structures, typically located in the 

scribe lines of product wafers. Force-measure sequences can be programmed for single bias 



points or as multiple bias points swept in time. For the DC portion of the test suite, a typical 

set of requirements for measurement resources such as source-measure units (SMUs) might 

resemble those outlined in Table 1:

Device Type of Test
Measurement level/
method

Number of SMUs 
needed

CMOS transistor Threshold voltage, Vt Max. gm of 20 steps 3-4

Leakage 1pA 2

Idoff 100fA 2

Saturation current, Idsat µA to mA 2

Isub
nA to 10µA, sweep 50 
steps 3

Drain-source breakdown, BVdss V 1

Resistor Resistance µA 1

Diode Leakage pA 1

Forward junction voltage, Vf force single current 1

Table 1. Example SMU requirements.

A schematic example of sequential mode testing of the devices within a test site might 

look like Figure 2.

Figure 2. Example of sequential mode testing of devices within a single test site.

A modern parametric test system can have up to eight identical high resolution 

and high power SMUs. That means that in a sequential test mode, when a resistor is being 

measured (requiring one SMU), then up to seven SMUs are sitting idle. By measuring 

multiple mixed types of devices simultaneously within a single probe touchdown and thereby 

increasing utilization of both the tester and the prober, parallel test delivers higher throughput. 

For example, two resistors, one diode, and one transistor could possibly be measured 
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simultaneously by independently and asynchronously performing different connect-force-

measure sequences on all four devices at the same time (Figure 3).

Figure 3.

Figure 4 illustrates a schematic example of parallel mode testing of the devices within 

a test site that maximizes instrumentation resources.

Figure 4.

A parametric test system must have several fundamental hardware and software 

capabilities to support parallel test:

• Identical, redundant measurement paths, all with lab-grade resolution to support 

fast test setup and high code reuse, and minimize contention between hardware 

resources.

• Source and measurement hardware able to run independently. For example, each 

piece of hardware needs to have its own high precision A/D converters, as well as 

its own embedded real-time logic processors and communications channels.

• The test execution environment must be multi-threaded.
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Test structure design is another important consideration when attempting to get the 

maximum benefit of parametric parallel test. Depending on the company or fab's philosophy, 

test structures are typically designed to optimize one of these aspects: minimizing wafer 

area (lots of shared pads) and/or maximizing the quality of test results (little or no sharing 

of critical pads). Structures designed to maximize the quality of results typically allow a 

higher degree of parallel testing. Fabs whose philosophy for sequential test structures leads 

them to minimize area typically achieve appreciable throughput improvement initially, then 

can realize additional TTR by making small changes to their test structure designs as they 

intercept future mask changes.

Parametric test is used primarily during the process development, process integration, 

and volume fabrication portions of an IC's lifecycle (shown in Figure 5).

Figure 5.

Throughout the process ramp, the amount of parametric testing performed per wafer 

ranges widely and constantly, with roughly 100 times more parameters measured during 

process integration (when the learning curve is steepest) than during volume fabrication 

(when throughput and incremental yield improvement are more important). Therefore, 

parametric parallel test offers complementary benefits:

1. The ability to acquire the same amount of data in significantly less time during 

volume fabrication.

2. The ability to acquire more data in the same amount of test time during process 

development.

Volume production parallel parametric test—same amount of data in less time

One volume production logic IC manufacturer performs 300 parametric tests per 

site on the usual variety of device types. Fast integration (17msec) for signal averaging is 



used, and the fab’s philosophy dictates optimizing test structures for high data integrity—the 

test devices share few probe contact pads and the scribe line test insert isn’t optimized for 

minimum area. This case allows a high degree of parallelism using existing test structures and 

probe cards, and the fab achieved 1.7 times higher throughput in measurements at the sites 

overall, not including prober indexing (wafer movement) time between sites (Table 2).

56 secParallel test
98 secSequential test

Test time per site (sec)Test mode

42%42%42%TTTest time reductionest time reductionest time reductionTest time reductionTTTest time reductionTest time reductionTest time reductionTTTest time reductionT
1.7x1.7x1.7x

56 sec56 sec56 secParallel testParallel testParallel test
98 sec98 sec98 secSequential testSequential testSequential test

Test mode

Throughput improvement

Table 2.

Process development parallel parametric test—more data in the same amount of time

The less obvious benefit of parametric parallel test is the ability to acquire more 

data in the same amount of time. This use case can occur, for example, during process 

development, when the learning curve on new materials and devices is the steepest and the 

opportunity to shorten time-to-market is the greatest. Time-to-market is a primary profitability 

metric for any IC product. During process development, fabs need to obtain an enormous 

amount of data quickly for statistical analysis to determine process sensitivity and variability, 

for verification of process and device models, and for performing corner testing to produce 

initial process control limits.

Voltage-ramped breakdown (VRB) is one of the reliability tests used during process 

development to characterize gate capacitors and inter-level dielectrics (ILDs). The test is a 

very common check of damage to the gate dielectric from a poorly formed oxide or from 

damage induced by processing. In the case of inter-level dielectrics and the copper damascene 

process, this test is an important indicator of the integrity of the copper diffusion barrier layer 

and capping layer interface. The growing use of low κ dielectrics makes this test even more 

important because of their lower intrinsic breakdown fields and lower interfacial adhesion 

strengths. The typical test structure for inter-level dielectric reliability (Figure 6) in a copper/

low κ process is an inter-digitated metal-dielectric comb structure comprised of two parallel 

metal lines with dielectric between the lines:
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Figure 6.

VRB is a destructive test where voltage across the dielectric is ramped from 0V to as 

high as 100V, and leakage current is monitored. An abrupt increase in the measured leakage 

current from one voltage bias point to the next indicates the dielectric has catastrophically 

broken down and the voltage immediately before breakdown occurred is recorded. Due to 

the statistical nature of the failure mechanisms, many die are measured across the wafer, 

and cumulative probability of breakdown voltages is compared between different processes. 

Test time depends more on the voltage at which the dielectric fails (with good devices taking 

longer to test) and less on whether multiple DUTs are tested in parallel. A typical ramp rate 

for the VRB test of comb capacitors with low κ dielectric might be 1V/s. This ramp rate is 

slow relative to other breakdown tests because the voltages can be quite high and the leakage 

currents can be transient for low κ dielectrics. If breakdown occurs at 5MV/cm with a 0.2μm 

dielectric spacing, then it would take 100s to get to the 100V breakdown voltage. Faster ramp 

rates would result in even higher breakdown voltages because the effective time at a voltage 

is shorter. Such high breakdown voltages might exceed the voltage limit of the tester or 

change the failure mechanism in the low κ comb structure.

Given the relatively long time needed to perform this test, the number of die tested 

must be limited to obtain reasonable test throughput. A standard parametric test sampling 

strategy might be to measure only 16 out of the 121 die available on the wafer, and only one 

of the 12 structures available within a die (Figure 7).

A  G r e a t e r  M e a s u r e  o f  C o n f i d e n c e



A  G r e a t e r  M e a s u r e  o f  C o n f i d e n c e

Figure 7.

This strategy was believed to provide an optimal tradeoff between test time and 

amount of data. Process effects such as dielectric erosion and other phenomena were always 

observed to occur on spatial scales consistent with the chosen die sampling that spanned the 

wafer, so it was not believed that measuring more structures in closer proximity (more than 

one device per die) would provide any additional process information.
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The test time for 16 die was approximately one hour. Because it was modeled that 

measuring four DUT in parallel within the same die would not increase the test time and 

in the interest of discovering new processing phenomena, three more DUTs (#2, 3, 4) were 

measured in each site (Figure 8).

Figure 8.
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Figure 9 is the resulting Cumulative Probability Plot (CPP) of VRB test results from 

the test wafer.

Figure 9.

When only one DUT per die was tested, the median breakdown field was ~4MV/cm 

and the distribution was a very broad Gaussian, with no sign of multimode failures. Based on 

this data set, one might conclude the integrity of the low κ dielectric layer was compromised 

across the whole wafer, so the wafer and the process it represents should be rejected. 

However, the curve for the four DUTs combined that was acquired in nominally the same test 

time shows that the median breakdown field was 50% higher at 6MV/cm, and the distribution 

appears to be bimodal. A bimodal distribution indicates there might be a very local process 

issue affecting the integrity of the low κ dielectric, but the general integrity of the low κ

dielectric is good. This conclusion is significantly different than the one drawn from the 

one-DUT-per-die curve. Failure analysis of the failed die showed localized cracking of the 

dielectric passivation layer in the neighborhood of the die during test (Figure 10).
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Figure 10.

This cracking of the passivation layer was sufficient to degrade the breakdown 

properties of the low κ dielectric.

Summary and conclusions

The advent of parallel testing capability takes modern parametric test systems out 

of the extrapolation that predicts wafer test cost will exceed wafer fabrication cost in three 

technology nodes. Parallel parametric test has been shown to deliver the same data in 

substantially less test time in the volume production use case. It was also shown to deliver 

substantially more data (and learning) in the same test time during process development, with 

the discovery of a new Cu/low κ process integration effect. By coordinating the development 

of test structures for parallel test with scheduled mask changes, parallel parametric test also 

provides ongoing opportunities for decreasing parametric cost of test in volume production.
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